skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ren, Guodong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We have revisited the Kittel model that describes antiferroelectricity (AFE) in terms of two sublattices of spontaneous polarization with antiparallel couplings. By constructing a comprehensive phase diagram including the antiferroelectric, ferroelectric, and paraelectric phases in the parameter space, we have identified an AFE phase with stable antipolar states and metastable polar states (SAMP) when the coupling between the two sublattices is weak. We find that the metastability of the polar state in the SAMP AFE phase can lead to apparent ferroelectric behavior, depending on the measurement timescale—for example, the frequency of the applied electric field. This explains the observed ferroelectric behavior of orthorhombic hafnia, which is predicted to be antipolar from density functional theory calculations. 
    more » « less
    Free, publicly-accessible full text available October 13, 2026
  2. Free, publicly-accessible full text available July 18, 2026
  3. The atomic structures at epitaxial film–substrate interfaces determine the scalability of thin films and can result in new phenomena. However, it is challenging to control the structure of the interface. In this work, we report the strong tunability of the epitaxial interface of improper ferroelectric hexagonal ferrites deposited on spinel ferrites, achieving the artificial selection of two types of interfaces that are related by a 90° rotation of in-plane epitaxial relations and feature either disordered or hybrid reconstruction. The hybrid-type interface exhibits characteristic structures of both hexagonal ferrites and spinel ferrites, which remove the critical thickness for improper ferroelectricity. This tunable interfacial structure provides critical insight into controlling interfacial clamping to maintain robust improper ferroelectricity at the two-dimensional limit. 
    more » « less
    Free, publicly-accessible full text available August 20, 2026
  4. Optically anisotropic materials are sought after for tailoring the polarization of light. Recently, colossal optical anisotropy (Δn = 2.1) was reported in a quasi-one-dimensional chalcogenide, Sr9/8TiS3. Compared to SrTiS3, the excess Sr in Sr9/8TiS3 leads to periodic structural modulations and introduces additional electrons, which undergo charge ordering on select Ti atoms to form a highly polarizable cloud oriented along the c-axis, hence resulting in the colossal optical anisotropy. Here, further enhancement of the colossal optical anisotropy to Δn = 2.5 in Sr8/7TiS3 is reported through control over the periodicity of the atomic-scale modulations. The role of structural modulations in tuning the optical properties in a series of SrxTiS3 compounds with x = [1, 9/8, 8/7, 6/5, 5/4, 4/3, 3/2] is investigated using density-functional-theory (DFT) calculations. The structural modulations arise from various stacking sequences of face-sharing TiS6 octahedra and twist-distorted trigonal prisms and are found to be thermodynamically stable for 1 < x < 1.5. As x increases, an indirect-to-direct band gap transition is predicted for x ≥ 8/7 along with an increased occupancy of Ti-dz2 states. Together, these two factors result in a theoretically predicted maximum birefringence of Δn = 2.5 for Sr8/7TiS3. Single crystals of Sr8/7TiS3 were grown using a molten-salt flux method. Single-crystal X-ray diffraction measurements confirm the presence of long-range order with a periodicity corresponding to Sr8/7TiS3, which is further corroborated by atomic-scale observations using scanning transmission electron microscopy. Polarization-resolved Fourier-transform infrared spectroscopy of Sr8/7TiS3 crystals shows Δn ≈ 2.5, in excellent agreement with the theoretical predictions. Overall, these findings demonstrate the compositional tunability of optical properties in SrxTiS3 compounds by control over atomic scale modulations and suggest that similar strategies could be extended to other compounds having modulated structures. 
    more » « less
    Free, publicly-accessible full text available October 20, 2026
  5. Abstract Noncollinear ferroic materials are sought after as testbeds to explore the intimate connections between topology and symmetry, which result in electronic, optical, and magnetic functionalities not observed in collinear ferroic materials. For example, ferroaxial materials have rotational structural distortions that break mirror symmetry and induce chirality. When ferroaxial order is coupled with ferroelectricity arising from a broken inversion symmetry, it offers the prospect of electric‐field‐control of the ferroaxial distortions and opens up new tunable functionalities. However, chiral multiferroics, especially ones stable at room temperature, are rare. A strain‐stabilized, room‐temperature chiral multiferroic phase in single crystals of BaTiS3is reported here. Using first‐principles calculations, the stabilization of this multiferroic phase havingP63space group for biaxial tensile strains exceeding 1.5% applied on the basalab‐plane of the room temperatureP63cmphase of BaTiS3is predicted. The chiral multiferroic phase is characterized by rotational distortions of TiS6octahedra around the longc‐axis and polar displacement of Ti atoms along thec‐axis. The ferroaxial and ferroelectric distortions and their domains inP63‐BaTiS3are directly resolved using atomic resolution scanning transmission electron microscopy. Landau‐based phenomenological modeling predicts a strong coupling between the ferroelectric and the ferroaxial order makingP63‐BaTiS3an attractive test bed for achieving electric‐field‐control of chirality. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  6. Abstract The switching characteristics of ferroelectrics and multiferroics are influenced by the interaction of topological defects with domain walls. We report on the pinning of polarization due to antiphase boundaries in thin films of the multiferroic hexagonal YbFeO3. We have directly resolved the atomic structure of a sharp antiphase boundary (APB) in YbFeO3thin films using a combination of aberration-corrected scanning transmission electron microscopy (STEM) and total energy calculations based on density-functional theory (DFT). We find the presence of a layer of FeO6octahedra at the APB that bridges the adjacent domains. STEM imaging shows a reversal in the direction of polarization on moving across the APB, which DFT calculations confirm is structural in nature as the polarization reversal reduces the distortion of the FeO6octahedral layer at the APB. Such APBs in hexagonal perovskites are expected to serve as domain-wall pinning sites and hinder ferroelectric switching of the domains. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  7. The synthesis and ligand-mediated assembly of ultrasmall antimony(iii) sulfide nanoparticles is reported. These Sb2S3nanoparticles exhibit fast electrochemical cycling and long lifetimes for lithium and sodium ion systems. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  8. Abstract BaTiS3, a quasi-1D complex chalcogenide, has gathered considerable scientific and technological interest due to its giant optical anisotropy and electronic phase transitions. However, the synthesis of high-quality BaTiS3crystals, particularly those featuring crystal sizes of millimeters or larger, remains a challenge. Here, we investigate the growth of BaTiS3crystals utilizing a molten salt flux of either potassium iodide, or a mixture of barium chloride and barium iodide. The crystals obtained through this method exhibit a substantial increase in volume compared to those synthesized via the chemical vapor transport method, while preserving their intrinsic optical and electronic properties. Our flux growth method provides a promising route toward the production of high-quality, large-scale single crystals of BaTiS3, which will greatly facilitate advanced characterizations of BaTiS3and its practical applications that require large crystal dimensions. Additionally, our approach offers an alternative synthetic route for other emerging complex chalcogenides. Graphical Abstract 
    more » « less
  9. The recent observation of ferroelectricity in the metastable phases of binary metal oxides, such as HfO2, ZrO2, Hf0.5Zr0.5O2, and Ga2O3, has garnered a lot of attention. These metastable ferroelectric phases are typically stabilized using epitaxial strain, alloying, or defect engineering. Here, we propose that hole doping plays a key role in the stabilization of polar phases in binary metal oxides. Using first-principles density-functional-theory calculations, we show that holes in these oxides mainly occupy one of the two oxygen sublattices. This hole localization, which is more pronounced in the polar phase than in the nonpolar phase, lowers the electrostatic energy of the system, and makes the polar phase more stable at sufficiently large concentrations. We demonstrate that this electrostatic mechanism is responsible for stabilization of the ferroelectric phase of HfO2 aliovalently doped with elements that introduce holes to the system, such as La and N. Finally, we show that spontaneous polarization in HfO2 is robust to hole doping, and a large polarization persists even under a high concentration of holes. 
    more » « less
  10. Materials with metastable phases can exhibit vastly different properties from their thermodynamically favored counterparts. Methods to synthesize metastable phases without the need for high-temperature or high-pressure conditions would facilitate their widespread use. We report on the electrochemical growth of microcrystals of bismuth selenide, Bi2Se3, in the metastable orthorhombic phase at room temperature in aqueous solution. Rather than direct epitaxy with the growth substrate, the spontaneous formation of a seed layer containing nanocrystals of cubic BiSe enforces the metastable phase. We first used single-crystal silicon substrates with a range of resistivities and different orientations to identify the conditions needed to produce the metastable phase. When the applied potential during electrochemical growth is positive of the reduction potential of Bi3+, an initial, Bi-rich seed layer forms. Electron microscopy imaging and diffraction reveal that the seed layer consists of nanocrystals of cubic BiSe embedded within an amorphous matrix of Bi and Se. Using density functional theory calculations, we show that epitaxial matching between cubic BiSe and orthorhombic Bi2Se3 can help stabilize the metastable orthorhombic phase over the thermodynamically stable rhombohedral phase. The spontaneous formation of the seed layer enables us to grow orthorhombic Bi2Se3 on a variety of substrates including single-crystal silicon with different orientations, polycrystalline fluorine-doped tin oxide, and polycrystalline gold. The ability to stabilize the metastable phase through room-temperature electrodeposition in aqueous solution without requiring a single-crystal substrate broadens the range of applications for this semiconductor in optoelectronic and electrochemical devices. 
    more » « less